




2007 CAMPUT Conference

April 30, 2007

Allen Wright, Executive Director & CEO The Coal Association of Canada



 Worldwide Energy From Coal
 The Reality of Electricity Supply
 Technology: The Key to using Coal Better

Why Clean Coal



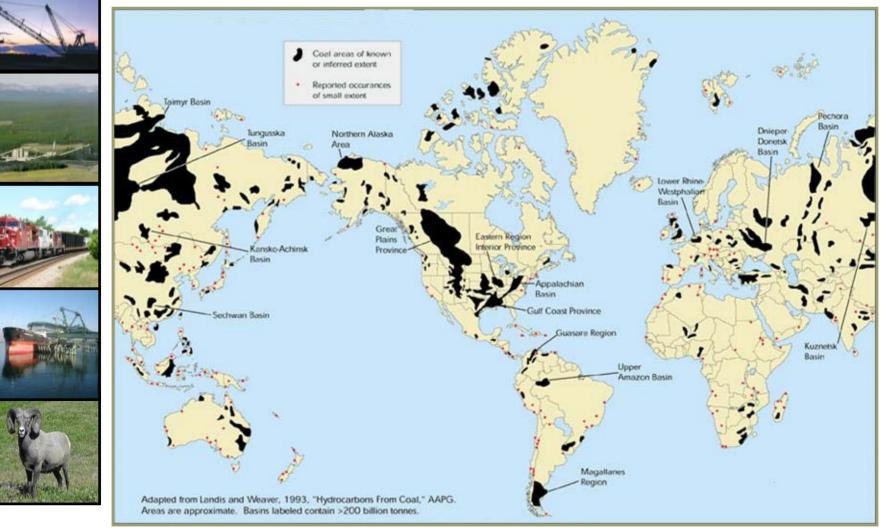


### 'This is Coal's Century...'

Lord Oxburg The Carbon Capture and Storage Association - 2007







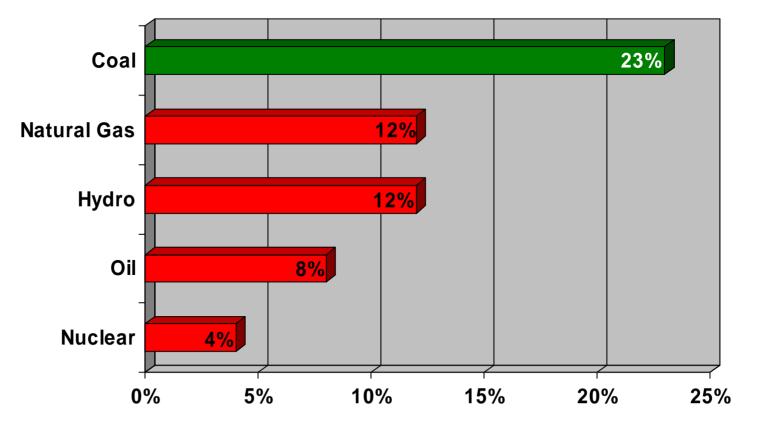

## **Worldwide Energy From Coal**

- > 26% of the world's primary energy
- > 39% of all electricity
- > 1.6 B w/o electricity coal a solution
- > Widely dispersed around the globe
- Distribution varies notably from that of oil and gas
  - United States 26% 'Saudi Arabia of Coal'
  - Former Soviet Union 23%
  - China and India 22%
  - None in the Middle East
- Global reserves of 980 billion tonnes
  - 3 times the amount of oil on an energy basis



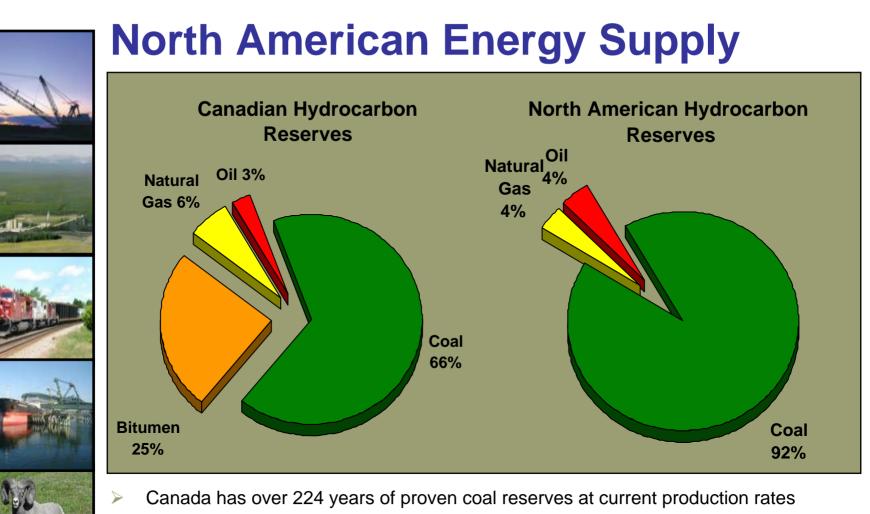
### **Global Coal Distribution**




the COAL Association of Anada

Source: Norwest Corp.




### Global Coal Use Increased by 1 Billion Tonnes from 2001 – 2005

#### % Increase in Global Energy Consumption



Source: BP Statistical Review of World Energy, 2006 edition





Advantageous cost structure

- Western Canadian Coal: \$1.00 GJ
- Ontario Coal Imports: \$2.00 GJ
- Natural Gas: 2006: \$6.00 to \$14.00 /GJ very volatile





## The Reality of Electricity Supply

- Demand increases at about 2.8% per year
  - More rapidly than overall energy use
- Total world production in 2003 was 16,000 TWh
  - 10,000 TWh was from conventional thermal (mostly coal)
- Large potential growth in production
  - An additional 1,500 TWh by 2010
- > 250 new coal-fired units worldwide by 2010
  - One per week
- Clearly there is a need for high performance conventional coal-fired technology as well as conversion technologies





### Energy Realities will Drive Equipment Selection

- Alternatives to coal are very costly
- Existing North American gas plants sit idle while utilities contemplate new coal capacity
- Retrofit technology is available for most noncompliant plants
  - Some older coal units will be closed
- Remarkable developments in conversion technologies will occur;
  - Prudence will dictate that IGCC and PFBC be backed up by known and proven technology
- > A combination of all options will drive the industry
  - In the beginning weighted toward conventional
  - Later the weighting will shift to new technology
- Security of supply is at the forefront of energy policy





## **Trends in Europe and Asia**

- High energy prices and environmental regulations promote
  - Efficiency
  - New technology
- Germany, Spain, Sweden, Denmark, Japan, Korea and Australia have built industry leading plants:
  - PC and ACFB units in Supercritical and Ultra Supercritical steam conditions
  - District heating for increased efficiency
  - Co-firing with alternative fuels
  - CCS a key focus for Europeans
- Some coal-to-gas conversion technologies have been demonstrated in Europe but the workhorse is still the Rankine Cycle\*
- China & India planned coal plants with emissions profile many times Kyoto signatories

\* The Rankine Cycle is the Thermodynamic construct that underpins almost all of the world's coal-fired power generation





## **Meeting Energy Demand – Its About:**

- Balancing cost and emissions
- > Orderly transformation to a lower emission future
- An energy mix conventional coal, cleaner and clean coal
- Conservation and efficiency are key elements
  - Need to consider District Heat, CHP and Integrated Energy Systems
- Governments can guide orderly transition over longer period
- Industry can lead
- Need to invest in technological solutions





### Technology: The Key to Using Coal Better







### What is "Clean Coal Technology"?

Innovative new technologies designed to extract and utilize coal in a more efficient and cost effective manner while reducing the environmental impact of these activities.

**Clean Coal Technology Roadmap 2005** 





## **Potential CCT Pathways**

| Combustion                                                                                                                                           | Gasification                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Pulverized Coal</li> <li>Sub-critical steam cycles</li> <li>Supercritical steam cycles</li> <li>Ultra-supercritical steam cycles</li> </ul> | Integrated Gasification Combined<br>Cycle (IGCC)<br>• Entrained Flow Gasifier<br>• Fluidized Bed Gasifier<br>• Moving Bed Gasifier |
| Fluidized Bed Combustion <ul> <li>Atmospheric Combustion</li> <li>Pressurized Combustion</li> </ul>                                                  | Pre-combustion Capture<br>Fuel Cells<br>Integrated Energy/Chemical Plexes                                                          |
| Ultra Clean Coal<br>Oxy-fuel Combustion                                                                                                              |                                                                                                                                    |

Oxy-fuel Combustion Cogeneration and Combined Heat and Power Post Combustion Carbon Capture CO<sub>2</sub> Transportation and Storage

the COAL Association of



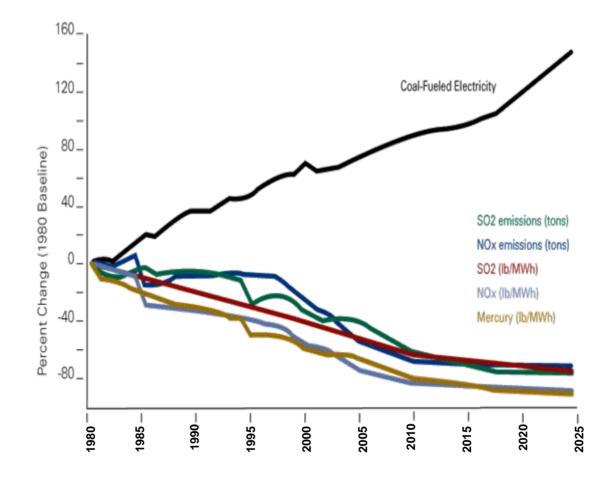
### **Conventional Coal?**

- There is still a place for conventional coal technology
- Methodologies will be specific in each case
  - Economics
  - Environmental regulations
  - Coal type available
  - End use
- Coal will continue to be a major component of the worldwide energy industry due to it's abundance, availability and affordability





### **Clean Coal Technology: The International Experience**


- Variety of CCT in commercial use around the world
  - SC, USC, FBC, IGCC
  - Japan, Netherlands, Germany, Spain, Korea
  - Initial use in North America (G3 burner, Wabash, IN)
- Maximize value of coal resource
- Better technology rather than simply shut down coal use
  - Taking a long-term view of sustainability
    - Environmental, social and economic sustainability





### **Coal Use Grows While the Environment Improves**

**Change in Coal-Fueled Electricity and Emissions** 



Source: U.S. Environmental Protection Agency, IEA Annual Energy Outlook 2005.





## **Supercritical Coal Plants in Canada**

#### **Genesee 3**

- Canada's most advanced coal-fired generation unit
- Dramatic reduction in emissions
  - 18% reduction in CO<sub>2</sub> below Alberta average
  - 99.9% reduction in particulate matter; 77% SO<sub>2</sub>; 54%NO<sub>y</sub>



#### **Keephills 3 – Supercritical**

- > 450 MW Q1 2001 \$1.6 billion
  - 76% reduction in So<sub>x</sub>; 68% No<sub>x</sub>; 72% Hg
  - 24% reduction in CO<sub>2</sub>

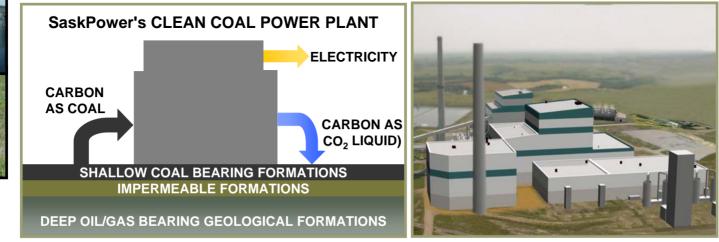






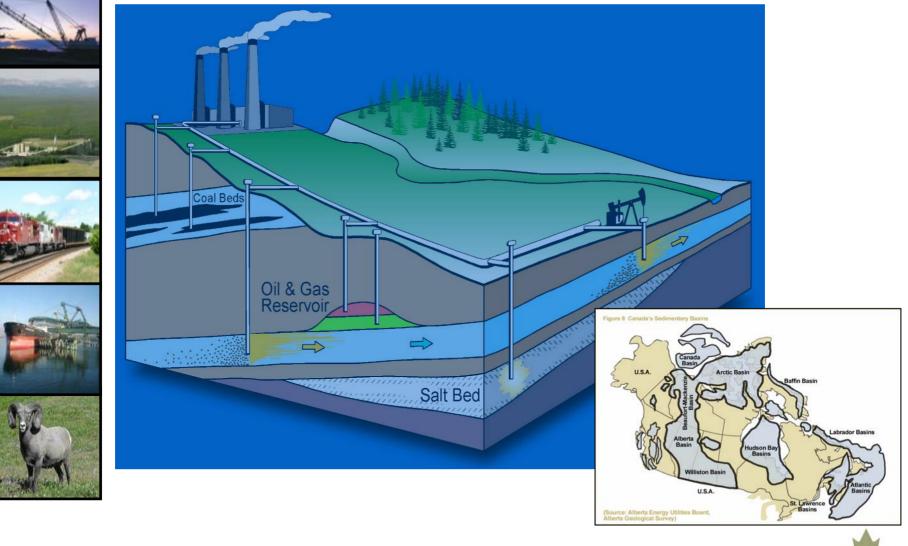
## **Carbon Capture and Storage (CCS)**

- IPCC Special Report CSS (2005)
  - Potential for 2,000 Gt CO<sub>2</sub> geological storage
  - Ocean storage could add thousands Gts to this
  - Power plants with CCS could reduce CO<sub>2</sub> emissions by 80-90% net
  - Majority of CCS technologies either economically feasible under specific conditions or part of a mature market now
  - Potential leakage:
    - likely < 1% over 100 years;</li>
    - very likely <1% over 1,000 years
- Geological Sequestration
  - EOR/ECBM i.e. Weyburn Saskatchewan
  - Deep Saline Aquifers






### Clean Coal Opportunity: The SaskPower Project


World's first "Near Zero Emissions" pulverized coal power plant based on oxy-fuel technology

- > 300 MWe net; 450 MW Gross
- Capturing 90%+ of CO<sub>2</sub>
- > 3 MT/y  $CO_2$  for sequestration or EOR Sale
- > 1.6 MT/y emission reduction
- Fast tracked for in service 2011/2012: decision mid 2007





### **Geological Sequestration of CO<sub>2</sub>**







### **CCS** – Issues

- Serious need for pipeline infrastructure
- Many new regulatory issues
  - Permanence (not leak out) IPCC Report
  - Ground Water Flows
  - Impermeable cap rocks
- Who covers costs value of EOR cover cost & transport
- > Availability of appropriate geological structures
- Probable role for public/private partnerships
- Some NGO's skeptical





## Gasification as a Future Technology

- Interest in gasification as a future technology is increasing significantly
- > What has changed?
  - Traditional fuel costs are increasing
  - Domestic fuel security and fuel price stability
  - CO2 concerns and reduction of future risk
  - US third wave emission reductions for power plants including mercury
  - U.S. Energy policy initiatives
  - Paradigm shift of IGCC suppliers





### **Coal Conversion Technologies**

- Coal can be converted to a form of synthesis gas that has features similar to natural gas
  - Four major suppliers of Gasification Technology
  - Conversion technologies have existed for many years
  - Current gas prices support the capital expenditures
  - Synthesis Gas can be used for:
    - Replacement of Natural Gas in industry
    - Conversion to Hydrogen for Bitumen upgrading
    - Feedstock to chemical production
    - Combined Cycle power production
- > All emissions are eliminated in the process
- > Pure  $CO_2$  is a by-product





## **Gasification in the World**

- > 117 Operating Plants
  - 285 Gasifiers
  - Capacity ~ 45,000 MWth
- Feedstocks
  - Coal 49%, Petroleum Residue 36%
  - Products
    - Chemicals 37%, Liquids 36%, Power 19%
  - Growth Forecast
    - 5% annual





## Sherritt's Dodds-Roundhill Project

- > First commercial coal gasification project in Canada
- Produce hydrogen synthetic oil upgrading
- Coal price is stable, natural gas price is volatile
- $\geq$  Byproduct CO<sub>2</sub> to be used for EOR
  - No current supply of commercial quantities
    - Hydrogen
    - Carbon Dioxide





# **ENMAX** Coal to Gas Project

- ≻ Size 1200 MW
- Gasification Technology BATEA off the shelf
- ≻ Cost \$1.5 \$2.5 Billion
- > Timing Phase 1 Target 3 Yrs
- Produce 50% less CO2 than current coal plants
- Potential to meet 2/3 of Calgary's electricity needs
- Firm up southern transmission grid allow more wind





## **Constraints on Adopting Clean Coal**

- Sterilization of existing infrastructure
   25% premium on capital compared to existing technology
- Preclusive environmental policy
- Market for power, heat, hydrogen, syngas and CO<sub>2</sub>
- Infrastructure such as CO<sub>2</sub> or hydrogen pipelines





# Why Clean Coal?

- Lowest Cost source of power generation
  - Competitive solution even with increased technology cost
- > Available
  - India & China have little option
  - pressure to develop oil sands
- Secure supply
  - Hundred of years vs. decades for oil and gas
  - Lowers dependence on imports
- Limits need to purchase offshore credits
  - Encourages development of domestic technology





# Why Clean Coal?

- Coal gasification makes hydrogen a commodity
- Preserves existing social infrastructure and jobs
- Fully compatible with development of renewables (i.e. wind)
- Conservation & energy efficiency are key elements
- Timeliness
  - Technology solutions within next 5 years
  - GHG reductions by 2020 and near zero emissions by 2050





# **Thank You**



See us at www.coal.ca

